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Abstract 

Al-Mussaib Thermal Power Plant faces critical challenges of excessive 

fuel consumption, leading to significant CO₂ emissions and reduced 

operational efficiency. These inefficiencies are primarily attributed to 

outdated equipment, low boiler efficiency, and inadequate maintenance, 

posing environmental and economic concerns. This study employs 

HYSYS software to analyze plant performance and propose operational 

improvements to enhance efficiency and sustainability. The analysis 

reveals that a specific fuel consumption (SFC) of 0.24 kg/kWh for 155 

MW results in CO2 emissions of 0.75 kg/kWh, while optimal operation 

requires 0.31 kg/kWh of specific fuel resulting in CO2 emissions of 0.95 

kg/kWh. Similar inefficiencies are evident at higher capacities, such as 

205 MW, further underscoring the need for upgrades and regular 

maintenance. At (155 MW), actual efficiency is only 27%, highlighting 

substantial room for improvement. Targeted operational adjustments, 

including regular maintenance, can optimize energy conversion, 

minimize fuel waste, and reduce emissions. Notably, as at a 70% load, 

the gap between actual and design fuel consumption narrows from 4.2 

kg/s to 2.2 kg/s, reflecting improved efficiency at higher operational 

loads. Operating under optimized conditions not only reduces 

unnecessary fuel consumption but also supports sustainable and cost-

effective power generation. This study emphasizes the importance of 

addressing inefficiencies to reduce environmental impact and enhance 

the operational viability of thermal power plants. 

  

1. Introduction 

As global energy demands continue to rise, steam plants remain a vital component of the energy mix, especially 

in regions dependent on fossil fuels [1]. Among these fuels, crude oil plays a significant role in electricity 

generation [2–3]. However, the combustion of crude oil not only provides much-needed energy but also results in 

considerable carbon dioxide (CO2) emissions [4–7]. In the case of power plants, their impact on the environment 

is almost always negative, ranging from direct environmental issues such as acid rain to indirect consequences like 

global warming and other related effects [8–12]. Therefore, understanding the scale of CO2 emissions from 

industrial activities, is essential for regulating and implementing future mitigation strategies for burning fossil 

fuels, especially in developing countries [13].  
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Comparative research has underscored the benefits of optimizing fuel use, Moon et al. [14] found that energy 

production level significantly affects fuel efficiency, with outdated equipment leading to excessive fuel 

consumption and emissions in Asian thermal plant. Additionally, research by Zhao et al. and Su et al. [15–16]. 

Revealed that increasing energy output can improve thermal efficiency by reducing specific fuel consumption, 

suggesting that some plants may be underutilizing their potential at lower production levels. 

Zhang et al. [17] used machine learning algorithms to predict fuel consumption and emissions in real time based 

on varying output levels in thermal power plants across East Asia. Their study found that optimized fuel 

consumption reduced CO₂ emissions by 18% while maintaining consistent energy output, particularly as 

production levels approached optimal efficiency ranges. Another digital study by Chen and Chen [18] employed 

exergy analysis to evaluate how different energy production levels affect the fuel consumption patterns in oil-fired 

plants, revealing that efficiency peaked when output was around 80% of the plant’s maximum capacity, reducing 

specific fuel consumption significantly. A study by Liang et al. [19] explored the effects of production levels on 

thermal efficiency across multiple crude-oil-fired power plants in China, their findings indicated that thermal 

efficiency improved significantly as plants operated closer to their designed maximum output. By operating within 

a controlled output range, plants reduced specific fuel consumption by 20%, leading to a proportional reduction in 

CO₂ emissions [20–21]. Zhao et al. and Su et al. [15–16] work reinforces the idea that energy production levels 

are crucial in determining fuel efficiency and emissions. 

Shrivastava et al.,[22] study found that Thermal efficiency increases when plants operate within 80-90% capacity, 

reducing fuel consumption by 15%. However, efficiency declines below optimal load levels, leading to excess fuel 

consumption and emissions. Marshall et al. [23] study found a 20% improvement in thermal efficiency between 

85-95% of maximum capacity, highlighting the environmental and economic benefits of maximizing efficiency. 

López et al.’s [24] study found an 18% improvement in thermal efficiency at 90% capacity, recommending 

optimized load management strategies for older plants. 

The present study aims to evaluate the carbon dioxide (CO₂) emissions and thermal efficiency of the Al-Mussaib 

Thermal Power Plant by analyzing the discrepancies between actual and ideal fuel consumption across various 

energy production levels. Using HYSYS software, the study quantifies the CO₂ emissions resulting from 

suboptimal crude oil consumption and identifies the load conditions that achieve optimal performance. By 

estimating the environmental and operational impacts of these discrepancies, the research seeks to provide insights 

into improving the plant’s efficiency and reducing its carbon footprint, contributing to more sustainable energy 

production practices. 

2. Theoretical Work 

2.1. Power Plant Components 

The Rankine cycle forms the basic principle of a steam power plant, where both heat addition and expansion 

processes are central to its operation. In a steam power plant, the boiler plays a key role, functioning as the heart 

of the system. As shown in Figure (1), the process begins with water entering the boiler, where it is pressurized 

and heated to produce steam at high temperature and pressure [25]. 
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Figure (1): Simple Rankin Cycle diagram [25] 

2.2. Field Data for Power Plant  

The power complex consists of four 300 MW generating units, making it one of Iraq's highest-capacity active 

power plants. Units 1 and 2 sustained significant damage during the 1991 Gulf War, resulting in the suspension of 

their operations until they were recommissioned in 2000 and 2001. Despite the resumption of operations, the power 

output remains suboptimal, reaching no more than 70% of the rated capacity. Tables (1 & 2) present both actual 

and design field data for the boiler unit (Unit 1). Average daily operating data across varying periods were analyzed 

to achieve different load levels. 

Table (1): Actual field data (Operating parameter of Unit 1) [26]. 

*Fuel (crude oil) mass flow rate, **Specific heat capacity of air 

Active power (MW) 154.8 158.2 177 193 202 204 

Main steam Temperature (˚C) 532.6 537.9 538.85 538.19 536.9 540 

Feed water Temperature 

Economizer Inlet 𝑇12(˚C) 
136 136.7 136.8 130 145 145 

Boiler side main steam pressure  

(bar) 
144.3 144.4 145.9 140.3 154.7 154.9 

* Fuel mass flow rate ( 
𝑚3

ℎ
) 61.6 61.8 62.29 62.5 64 63.9 

Eco INL FEED WATER PRES 

 (bar) 
139 138.6 150.4 145.9 152.3 152.6 

FEED WATER FLOW (t/h) 600 610 653.7 646.6 661 672 

Lower heating value LHV (kJ / kg) 42178 42178 42178 42178 42178 42178 

**Cpa ( kJ / kg k) 1.005 1.005 1.005 1.005 1.005 1.005 

Density of crude oil  
𝑘𝑔

𝑚3 

 
866.4 866.4 866.4 866.4 866.4 866.4 
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Table (2): Design field data of (Unit 1) [26]. 

Power 

MW 

Fuel consumption 

(kg/s) 

120 7.4 

150 8.9 

180 10.4 

210 12.0 

240 13.69 

300 16.98 

2.3. Simulation Using HYSYS 

Aspen HYSYS (version 10), a comprehensive engineering software suite, is widely used for designing and 

simulating chemical and mechanical processes, particularly in the fuel, gas, and oil industries. HYSYS enables 

detailed modeling of complex processes; here, a steam boiler model was developed to simulate its function within 

the steam power cycle, as illustrated in Figure (2). This model includes critical components such as the feedwater 

inlet, combustion chamber, and steam generation section. Standard conditions assume water is heated by crude oil 

fuel, with air composition set at 21% oxygen and 79% nitrogen, and the Peng-Robinson (PR) fluid package 

selected for accurate hydrocarbon equilibrium predictions [27]. Fuel composition and crude oil properties are 

detailed in Table (3). 

Table (3): Crude oil composition and properties [26]: 
(a) Compositions of Crude oil 

Component Carbon Hydrogen Sulfur Oxygen 

Mass (%) 82.3 12.5 2 0.0 

(b) Specifications of crude oil  

Specification Crude oil 

Specific gravity at 15.56 °C 0.8572 

Viscosity @ 21.11 °C 45 sec 

Viscosity @ 37.78°C 39 sec* 

Flash point** 138 °C 

LHV*** 42178 kJ / kg 
 
*Sec typically refers to the time it takes for a specified volume of oil to flow through a viscometer. 
**Flash point is the lowest temperature at which vapors of crude oil start to flash. 
***Lower heating value LHV, 

mailto:Viscosity@37.8
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Figure (2): Aspen HYSYS model of the boiler flowsheet [28]. 

2.4. Theoretical Equations of Some Performance Parameters of Boiler Unit 

The fuel mass flow rate (kg/s) is determined by Equation (1), (2) in kg/s units [29]: 

�̇�𝐟 = (𝐟𝐮𝐞𝐥 𝐦𝐚𝐬𝐬 𝐟𝐥𝐨𝐰 𝐫𝐚𝐭𝐞 (
𝐦𝟑

𝐡
) − 𝟎. 𝟎𝟒𝟎𝟐𝟐𝟓𝟓𝟕) × 𝐓𝟏𝟐)/𝟑𝟔𝟎𝟎                      (1) 

�̇�𝐟 =  𝐯𝐟 × 𝛒𝐟                                                                 (2) 

Where �̇�𝑓: Fuel volume flow rate (
𝑚3

𝑠
), 𝜌𝑓: Density of crude oil (

𝑘𝑔

𝑚3), 𝑇12: Feed water Temperature Economizer 

Inlet (˚C) 

The overall thermal efficiency 𝜼𝒕𝒉 is calculated using Equation (3) [29]: 

𝜼𝒕𝒉 =
𝑷𝒐𝒘𝒆𝒓

�̇�𝒇×( 𝑳𝑯𝑽)
                                                                 (3) 

Where �̇�̇ 𝑓: Actual Fuel mass flow rate (kg/s), 𝐿𝐻𝑉: Lower heating value of the fuel (kJ/kg). 

The specific fuel consumption (SFC), expressed in kg/kWh, is calculated using Equation (4) [29]: 

𝑺𝑭𝑪 =
�̇�𝒇×𝟑𝟔𝟎𝟎

𝑷𝒐𝒘𝒆𝒓
                                                           (4) 

The heat rate (HR) represents the amount of heat consumed to generate one unit of electrical energy. It can be 

calculated using Equation (5) and is expressed in kJ/kWh: 

𝑯𝑹 =
𝟑𝟔𝟎𝟎

𝜼𝒕𝒉
                                                            (5) 

3. Results and Discussion 

Thermal power plants in Iraq, like Musayyib, are indispensable for ensuring energy stability across the national 

grid. As such, they aim to maintain consistent electricity generation despite challenges. The study centers on 

simulating boiler performance, as depicted in Figure (2), using the Aspen HYSYS program. This simulation allows 
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for a detailed analysis of the combustion process and heat transfer mechanisms within the boiler. By incorporating 

the physical and chemical properties of crude oil. 

Figure (3) shows in this thermal power plant, the actual fuel consumption was significantly higher than the design 

specifications. To generate 155 MW, the design fuel consumption was set at 9.2 kg/s. However, the actual 

consumption increased to 13.4 kg/s, representing an excess of 4.2 kg/s above the design level a 45.7% increase in 

fuel usage for the same output. 

When the power output was raised to 205 MW, the actual fuel consumption rose to 14 kg/s, compared to the design 

fuel consumption of 11.4 kg/s. surpassing the design flow rate by 2.2 kg/s. The analysis reveals that the fuel 

consumed in the thermal power plant aligns more closely with the design specifications when energy production 

is at 70% of the design capacity. This indicates that as the plant operates closer to the design load, the gap between 

actual and design fuel consumption narrows, enhancing overall efficiency.  

Conversely, at lower energy production levels, the difference between actual and design fuel consumption 

increases significantly. This increase can primarily be attributed to issues related to the boiler's performance. When 

the steam temperature reaching the boiler is lower than optimal, it diminishes the efficiency of the steam generation 

process. This comparison highlights that while increasing fuel consumption improved power output to some 

extent, the plant still consumed more fuel than originally intended, pointing to potential areas for optimization in 

fuel usage. 

 
Figure (3): Comparison of Actual vs. Designed Fuel Consumption. 

The relationship between the thermal efficiency of a steam power plant and its carbon dioxide (CO₂) emissions is 

inversely proportional, as demonstrated in Figure (4). These results, obtained using Aspen HYSYS software, show 

that the lowest thermal efficiency, 27%, emitted 0.95 kg/kWh of CO₂. This relatively low thermal efficiency 

indicates that a significant portion of the energy in the fuel is lost as waste heat rather than being converted into 

useful electrical energy. In contrast, the station with the highest thermal efficiency, 34.8%, emitted 0.2 kg/kWh 

less CO₂ compared to the lowest efficiency. 
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Figure (4): Relation between thermal efficiency and CO2 emission. 

Using Aspen HYSYS, CO₂ emissions were determined by simulating the combustion process of crude oil, utilizing 

its specific properties and chemical composition. This study focused on calculating the specific carbon dioxide 

(CO₂) emissions generated during electricity production at the Al-Mussaib Thermal Power Plant in Iraq, based on 

real operating data. The analysis revealed that a specific fuel consumption (SFC) of 0.24 kg/kWh produced CO₂ 

emissions of 0.75 kg/kWh, while an increase in SFC to 0.31 kg/kWh resulted in higher CO₂ emissions of 0.95 

kg/kWh, as depicted in Figure (5). The results demonstrate that increasing thermal efficiency reduces CO₂ 

emissions per unit of electricity generated, underscoring a direct relationship between fuel efficiency and 

emissions. This highlights the critical need to enhance thermal efficiency for reducing environmental impacts and 

ensuring sustainable plant operations. 

 
Figure (5): SFC with CO2 Emission. 

Similarly, Lee et al. found that outdated machinery in Asian factories contributed to excessive fuel usage and 

increased CO₂ emissions. This issue is also evident at Al-Mussaib, where fuel consumption exceeds recommended 

levels. 

The Figure (6) compares between designed and actual thermal efficiency across power output levels, for instance, 

at a power output of 155 MW, the designed efficiency is around 41.3%, while the actual efficiency is lower of 

27%. This discrepancy suggests potential system inefficiencies, such as heat loss or mechanical inefficiencies. 
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Regular maintenance and optimization of thermal systems can bridge this gap, with improvements in insulation, 

heat recovery systems, and advanced control technologies enhancing actual thermal efficiency. 

 
Figure (6): Compares between designed and actual thermal efficiency across power output levels. 

Figure (7) illustrates the effect of the power output levels on the heat rate for crude oil of fuel. As the plant’s energy 

output rose from 155 MW to 205 MW, the temperature rate of crude oil dropped a 21.8% decrease. The likely 

causes include better heat transfer efficiency and reduced energy losses at higher outputs, as power plants typically 

operate more efficiently when closer to their design capacity. 

 
Figure (7): Impact of power output levels on the heat rate. 
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4. Conclusions 

The relationship between fuel consumption and CO₂ emissions at the Al-Mussaib Thermal Power Plant is a key 

focus of this research, highlighting the importance of efficient fuel usage to reduce environmental impact. By 

utilizing HYSYS software, the study quantifies CO₂ emissions resulting from inefficient crude oil consumption 

and identifies load conditions that optimize performance, addressing notable shortcomings at the facility. With 

13.4 kg/s of crude oil burned to produce 155 MW, resulting in 13.9 kg/s of CO2 emissions. In contrast, optimal 

operation requires only 33242 kg/h of fuel, similar inefficiencies were identified at a high capacity of 205 MW, 

largely due to outdated equipment, low boiler efficiency, and poor maintenance. The design of a thermal system, 

with a power output of 155 MW, shows a 27% actual efficiency, suggesting potential system inefficiencies. 

Regular maintenance and optimization can improve efficiency. Operating at this 70% load, reduces unnecessary 

fuel use, optimizing energy conversion efficiency and lowering emissions. This balance supports sustainable and 

cost-effective power generation. As production increases, the gap between actual and design fuel consumption 

decreases from 4.2 kg/s to 2.2 kg/s, indicating improved efficiency at higher operational loads. 

Conflict of Interest: The authors declare that there are no conflicts of interest associated with this research project. 

We have no financial or personal relationships that could potentially bias our work or influence the interpretation 

of the results. 
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