ICAR 2023 Special Issue

Iraqi Journal of Industrial Research, Vol. 11, No. 2 (2024)

Iraqi Journal of Industrial Research (IJOIR)

Journal homepage: http://ijoir.gov.iq

Assessing the Comparative Toxicity of *Salvia Officinalis* **Extracts and Copper Sulphate on** *Melanopsis Nodosa***, a Freshwater Snail**

Mohammed J. L. Al-Obaidi*, Ali H. Abbas, Fadhaa O. Sameer

Tropical Biological Research Unit, Collage of Science, University of Baghdad, Iraq

Article information

Article history: Received: October, 31, 2023 Accepted: February, 02, 2024 Available online: October, 20, 2024

Keywords: Molluscicides, *Melanopsis nodosa*, Plant extracts

******Corresponding Author:* Mohammed J. L. Al-Obaidi lafta@sc.uobaghdad.edu.iq

DOI: <https://doi.org/10.53523/ijoirVol11I2ID385>

This article is licensed under: [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/) [International License.](https://creativecommons.org/licenses/by/4.0/)

Abstract

This study investigates the molluscicidal properties of *Salvia officinalis* extracts against *Melanopsis nodosa* snails, with a focus on environmentally friendly alternatives to traditional chemical molluscicides. *Melanopsis nodosa*, a common freshwater snail in Iraq, is an intermediate host for diseases affecting humans and animals. Traditional molluscicides, such as copper sulphate, pose environmental and non-target organism risks. *S. officinalis*, known for various medicinal uses, was explored for its potential molluscicidal activity. Snails were collected from Muhyii Canal, Baghdad, and exposed to different concentrations of *S. officinalis* extracts and copper sulphate in controlled laboratory conditions. The study evaluated mortality rates at 24-, 48-, 72-, and 96-hours exposure, using the WHO method for molluscicide testing and Probit analysis for mortality calculation. Results showed significant molluscicidal activity of *S. officinalis* extracts, with the LC50 values of 15.53 ppm (24 hrs), 6.821 ppm (48 hrs), 4.288 ppm (72 hrs), and 0.0735 ppm (96 hrs). Compared to copper sulphate, the extracts were less effective but still significant, indicating the potential of *S. officinalis* as an environmentally friendly molluscicide. This study contributes to the search for safer molluscicides, highlighting *S. officinalis* extracts' effectiveness against *M. nodosa*. These findings could aid in controlling snail populations, thereby reducing the spread of snail-borne diseases, with lower environmental impact compared to traditional chemical molluscicides. Further research is suggested to understand the exact mechanism of snail mortality caused by these extracts.

1. Introduction

Molluscs including snails as *Melanopsis nodosa* are important organisms in the ecosystem. Also, mollusks were important medically because they are vectors and intermediate hosts for important human and animal diseases [1]. Melanopsis spp. was a common freshwater snail, belonging to the family Melanopsidae (Gastropoda: Caenogastropoda: Cerithioidea). It is widely distributed in Iraq [14, 15, 20, 21]. *Melanopsis nodosa* also was recorded in different regions and locations of Iraq by many authors, of these regions; Al-Swaib marsh in southern Iraq [26], Tigris River at Baghdad capital [27], Chebayish marsh at Thi-Qar province

[23], Rumaitha distract southern of Iraq [22], Gharaf River (branch of Tigris River) [18]; and Kut city at Wassit province [24].

There were many ways to snail control, including chemical, physical, and biological methods. Copper sulphate, Niclosamide, and Carbamates are the most common Molluscicides used to chemically control the snails. Methyl and Methiocarb were found to be moderately toxic to land snails too [17, 18].

Chemical substances used as Molluscicides found to be a hazard to the environment and non-target organisms [3]. Moreover, the disadvantage of these molluscicides is the high concentration (0.5–5%) may kill no target organisms [16]. In addition, the efficacy of these Molluscicids is varying in dry and moist conditions [15].

To overcome these problems, there was a need for new, more effective, and less hazardous molluscicides. In previous studies, it was discovered the promising molluscicidal properties of scharin from *Calotropis procera*, ouabin from *Acokanthera ouabaio* Lewin, cardenolide extracts from *Pergularia tomentosa* Linn and *Nerium oleander* L [14, 2]. Also, *Thevetia peruviana* (which contains cardenolides) was found to be toxic to slugs and snails [19]. Previous studies have shown that *Adenium arabicum* contains cardenolides that cause death to snails [14], thus this study was carried out to discover if *S. officinalis* displayed molluscicidal properties compared with copper sulphates.

2. Experimental Procedure

2.1. Collection of Samples

The freshwater snails *M. nodosa* (L) were collected from a canal named Muhyii Canal (longitude 33º 32′, 83′′E and latitude 44º 25′ 37′′ N) located in Al-Rasheed district (30km) Baghdad southern, Iraq, through 2018 weekly. Snails were brought to the laboratory, isolated, identified according to stander keys of snails, and acclimatized for a week. The snails were provided with proper food (*Alfa alfa* leaves extracts 10ml per 50L/ day) and ventilation to keep snail's survivals. Healthy snails (20-30 mm shell height and 3-4 gm weight) were selected for the experimentation.

2.2. Preparation of Aqueous Extract

S. officinalis was used as a medicinal plant for different purposes. Stock solution (SS) from the leaves of *S. officinalis* was prepared. After drying, a hand mill was used to dry the leaves in a shade condition (Estrella®, model 41B), sifted by a sieve (mesh size 20 µm) to obtain a fine powder, and kept in a cool dry place. We macerated 5 grams of leaf powder in 1 litter of distilled water for 24hrs to produce a stock solution of 5% then placed in glass flasks. The macerate was filtered in cotton gauze to get crude extracts. From this stock solution, serial of dilutions was made. One gram of copper sulphates (CuSO₄.5H₂O) (Riedel-De Haen company) was added to (1 litter) of distilled water to get a stock solution of 1% as a standard control.

2.3. Contact Toxicity and Calculation of Mortality

A serial of 1-10% concentrations was prepared from each stock solution of the *S. officinalis* extracts. All tests were repeated three times at different times. Ten individuals of snails without any food were tested in each replicate and calculated as average. In addition, a stock solution $(1g/L)$ of copper sulphate (CuSO₄) made as standard in comparisons. The W.H.O. method (II) for molluscicide testing was followed to monitor the susceptibility of snails and compare its potency with the extracts, exposure, and recovery determined. Different levels of the LC were calculated using probit analysis [13]. Bioassays experiments were conducted in the TBRU (Tropical Biological Research Unit, College of Science) laboratories. Bioassays evaluated by LC10, LC16, LC50, LC84, LC90, and LC100. These parameters were determined for each exposure period (24, 48, 72, 96 hours) in all concentrations. The results were recorded at the end of each 24-hour exposure. The numbers of dead snails were removed and recorded at 24, 48, 72, and 96 hrs after each application. The endpoint of dead individuals was considered when there was no movement, no response to stimulation by the glass rod, no recovery after 24 hrs of putting in clean water, and lack of the ability to adhere [3]. The mortality rate was calculated against *S. officinalis* and CuSO⁴ as a standard. Probit analysis was used to calculate the mortality and comparison among concentrations.

2.4. Statistical Analysis

Results were analysed using Bio-Stat v 5 software; all data were subjected to probit analysis according to Finney, using the probit equation bellow:

$$
Y = \varphi^{-1}(p) \dots \dots \dots \dots (1)
$$

Where Y' is the probit transformed value (5 used to be added to avoid negative values in hand calculation), p is the proportion (p = responders/total number) and inverse $\Phi(p)$ is the 100*p% quantile from the standard normal distribution.

Also, the concentrations were converted to Log10 by the bellow equation:

$$
Log(10) x = log(x) / log(10) \dots (2)
$$

Where $log(x)$ is the natural logarithm of x and $log(10)$ is the natural logarithm of the base 10.

3. Experiments of the Exposure

According to the Kolmogorov-Smirnov test, the mortality values of the snail *M. nodosa* exposed to *S. officinalis* extracts were followed to the normal distribution (P>0.05).

The results of this study showed that the lowest mortality recorded in 24hrs of exposure was zero (probit value 0.0001), while the highest mortality recorded in 24hrs of exposure was five (probit value 0.1642). Compared with CuSO4, the lowest mortality was 2 (probit 0.0295) and the highest mortality was killing off all snails of the experiment (probit 1). There were significant differences (P<0.001) in mortality caused by *S. officinalis* following the concentrations used in this experiment, but no significant differences ($p > 0.001$) in the CuSO₄ experiment (Table 1). The concentration chosen in this work to get the LC50 value was suitable as we note from the probit analysis results which showed that the values of probit for *S. officinalis* extracts concentrations were graduated from 3.2965-151.3557 for *S. officinalis* and 0.0842-0.5216 for CuSO₄ (Table 2).

The results of the study showed that the LC 50 of *S. officinalis* against the snail *M. nodosa* was 15.53ppm. While CuSO⁴ was 0.212ppm. LCL (lowest confidence level), UCL (upper confident level), and other LC different levels (10, 16, 84, 90, and 100) were tabulated in (Table 3).

The results of this work showed that increasing in *M. nodosa* mortality percentage was followed by an increase in *S. officinalis* extract and CuSO₄ concentrations (Figure 1).

Table (1): Experimental mortality and probit of *M. nodosa* snail exposed to *S. officinalis* extract for 24hr according to Finney Method (Lognormal Distribution).

Alpha value (for confidence interval) 0.001

Table (2): Comparative between *S. officinalis* and CuSO⁴ observed and expected of concentrations (Stimulus) percentile according to regression analysis.

ICAR 2022 Special Issue					Iraqi Journal of Industrial Research, Vol. 11, No. 2 (2024)			
75	5.6742	-0.5639	0.0256	0.2729	0.0161	0.2444	0.308	
80	5.8415	-0.5355	0.0266	0.2914	0.0179	0.2609	0.3318	
84	5.9944	-0.5094	0.0279	0.3094	0.0199	0.2765	0.3558	
90	6.2817	-0.4605	0.0314	0.3463	0.025	0.307	0.4074	
95	6.6452	-0.3987	0.0369	0.3993	0.034	0.3484	0.4863	
99	7.3268	-0.2827	0.0496	0.5216	0.0597	0.4375	0.6845	

Table (3): LC levels of *S. officinalis* extract and CuSO⁴ against *M. nodosa* snail exposed for 24hr.

4. Experiment with 48hrs Exposure

The results of this study showed that the lowest mortality recorded in 48hrs of exposure was 7 (probit value 0.1758), while the highest mortality recorded in 48hrs of exposure was 20 (probit value 0.5890). Compared with CuSO₄, the lowest mortality was 2 (probit 0.0295) and the highest mortality was killing all the experiment snails (probit 1). No significant differences (P>0.001) between mortality following the concentrations of *S*. *officinalis* and CuSO⁴ used in this experiment (Table 5).

The concentration chosen in this work to get the LC50 value were suitable as we note from the results of probit analysis which showed that the values of probit for *S. officinalis* extracts concentrations were graduated from 0.0622 - 656.2968 and 0.0485-0.5216 for CuSO⁴ (Table 6).

The results of the study showed that the LC 50 of *S. officinalis* against the snail *M. nodosa* was 6.82ppm and 0.213ppm of CuSO4. LCL (lowest confidant level), UCL (upper confidant level), and other LC different levels (10, 16, 84, 90, and 100) were tabulated in (Table 7).

The results of this work showed that increasing in *M. nodosa* mortality percent was followed by an increase in *S. officinalis* extract and CuSO₄ concentrations (Figure 2).

Table (5): Experimental mortality and probit of M. nodosa snail exposed to S. officinalis extracts for 48hrs according to the Finney Method (Lognormal Distribution).

Alpha value (for confidence interval) 0.001

Table (7): LC levels of S. officinalis extract and CuSO₄ to the snail M. nodosa depending on regression statistics.

Figure (2): Regression line and experimental point described the effect of *S. officinalis* and CuSO⁴ concentrations caused *M. nodosa* mortality within 48hr exposure**.**

5. Experiment with 72hr Exposure

The results of this study showed that the lowest mortality recorded in 72hrs of exposure was 21 (probit value 0.6438), while the highest mortality recorded in 72hrs of exposure was 27 (probit value 0.8605). Comparing with CuSO4, the lowest mortality was 2 (probit 0.0295) and the highest mortality was killing of all snails of the experiment (probit 1). No significant differences $(P>0.001)$ among mortality following the concentrations of *S. officinalis* and CuSO⁴ used in this experiment (Table 8).

The concentration chosen in this work to get the LC50 value were suitable as we note from the results of probit analysis which showed that the values of probit for *S. officinalis* extracts concentrations were graduated from 0.0002-12,626.0322 and 0.0485-0.5216 for CuSO₄ (Table 9).

The results of the study showed that the LC 50 of *S. officinalis* against the snail *M. nodosa* was -4.2889 ppm and 0.1737ppm for CuSO4. LCL (lowest confidence level), UCL (upper confidant level), and other LC different levels (10, 16, 84, 90, and 100) were tabulated in (Table 10).

The results of this work showed that increasing in *M. nodosa* mortality percent was followed by an increase in *S. officinalis* extract and CuSO⁴ concentrations (Figure 3).

Table (8): Mortality and probit analysis of *M. nodosa* snail exposed to *S. officinalis* extracts for 72hr depending on Finney Method (Lognormal Distribution).

Alpha value (for confidence interval) 0.001

Table (9): Dose (Stimulus) Percentile.

Table (10): LC levels of S. officinalis extract to the snail M. nodosa depending on regression statistics.

Figure (3): Regression line and experimental point described the effect of *S. officinalis* and CuSO⁴ concentrations caused *M. nodosa* mortality within 72hr exposure**.**

6. Experiment with 96hrs Exposure

The results of this study showed that the lowest mortality recorded in 96hrs of exposure was 28 (probit value 0.8971), while the highest mortality recorded in 96hrs of exposure was 29.75 (probit value 0.9914). Comparing with CuSO4, the lowest mortality was 2 (probit 0.0295) and the highest mortality was killing of all snails of the experiment (probit 1). No significant differences (P>0.001) among mortality following the concentrations of *S. officinalis* and CuSO⁴ used in this experiment (Table 11).

The concentration chosen in this work to get the LC50 value were suitable as we note from the results of probit analysis which showed that the values of probit for *S. officinalis* extracts concentrations were graduated from 0.0006- 8.9385 and 0.0485-0.5216 for CuSO⁴ (Table 12).

The results of the study showed that the LC 50 of *S. officinalis* against the snail *M. nodosa* was 0.0735 ppm and 0.1364 ppm for CuSO4. LCL (lowest confidant level), UCL (upper confidant level), and other LC different levels (10, 16, 84, 90, and 100) were not calculated (Table 13).

The results of this work showed that increasing in *M. nodosa* mortality percent was followed by an increase in *S. officinalis* extract and CuSO₄ concentrations (Figure 5).

Table (11): Mortality and probit analysis of *M. nodosa* snail exposed to *S. officinalis* extracts for 96hrs depending on Finney Method (Lognormal Distribution).

Alpha value (for confidence interval) 0.001

Table (12): Dose (Stimulus) Percentile.

	Probit	Log10[Does]	Standard	Dose	Standard		
Percentile		(Stimulus)]	error	(Stimulus)	error	LCL	UCL

Table (13): LC levels of S. officinalis extract to the snail M. nodosa depending on regression statistics.

Figure (4): Regression line and experimental point described the effect of *S. officinalis* and CuSO⁴ concentrations that caused *M. nodosa* mortality for 96hr exposure**.**

7. Discussion

Mollusks were considered as important intermediate host of human parasitic diseases [9]. Our study established that *S. officinalis* extracts have a molluscicidal activity against the target snails. These findings were in agreement with results obtained by references [4, 5].

We have used copper sulfate as a standard toxic material that caused death to the snail. This step was dependent on the findings of previous studies that reported the toxicity of copper to snails. It noted that the Cu (II) induced oxidation of Quinone and hydroquinone in the target cell. Also, Cu can be deposited as insoluble intracellular membrane-bound granules in the hepatopancreas of terrestrial invertebrates [6]. Adewunmi et al. noted that Cu has a high rate of bioaccumulation in the tissues of freshwater snails [7]. Hoang and Rand demonstrated that the toxicity of Cu carbonate to snails is distanced through many biological and chemical reactions. Also, they noted that the Cu was found to have accumulated in the soft tissue of the snails [8].

S. officinalis extracts were found to be potent substances to kill the snail *M. nodosa*. These findings were supported by another study that found that the ethanolic extracts of *S. officinalis* L. Leaves were found to be the most potent molluscicidal activity against *L. auricularia* snail. In another study, the lethal concentration of ethanolic extract of *S. officinalis* L. at 24hrs:12mg/L, 48hrs:10mg/L [10].

The mortality rate of *M. nodosa* caused by the S. *officinalis* extracts is due to the presence of some substances that cause the kill snails as terpenes [11] and monoterpenes [12]. Generally, the mechanism by which these extracts killed snails is not exactly known and requires further biochemical studies for elucidation*.*

In this work, the contact LC50 values of *S. officinalis* aqueous plant extracts for 24hr, 48hr, 72hrs, and 96hrs exposure were 15.53, 6.821, 4.288, and 0.073 ppm respectively. The contact LC50 values of CuSO⁴ for 24hr, 48hr, 72hrs, and 96hrs exposure were 0.213, 0.213, 0.1737, and 0.1364 ppm respectively. These results agreed with our previous findings that reported the LD50 of *S. officinalis* and Copper sulphate to *B. truncatus* were (20 and 2.2 g/L) respectively. The study showed that the extracts of *S. officinalis* were less effective than CuSO4. The results showed that the toxicity of extracts was dose and time-dependent [2]. Also, these results agreed with our previous study that found the LC50 of *T. vulgaris* and Copper sulphate to *B. truncatus* were (18.7, and 2.2 g/L) respectively. The study showed that *T. vulgaris* extracts were less effective than CuSO⁴ [3]. The results showed that the toxicity of extracts was concentration and time-dependent.

8. Conclusions

In conclusion, the obtained results of this study concluded that S. officinalis extract showed molluscicidal activity against M. nodosa snails and thus able assistance to control it.

Conflict of Interest: The authors declare that there are no conflicts of interest associated with this research project. We have no financial or personal relationships that could potentially bias our work or influence the interpretation of the results.

References

- [1] L. Konecny, ′′Snails as intermediate hosts for parasitic infections: host-parasite relationships and intervention strategies′′. Master's thesis, University College London, UK, 2020.
- [2] M. J. Al-Obaidi, A. H. Abbas, A. Y. Hanoon, and K. Ibrahim, ′′Using aquatic extracts of *Salvia officinalis* to control the snail *Bulinus truncatus* the intermediate host of schistosomiasis in Iraq (PART I)′′. *Basrah Journal of Veterinary Research*, vol. 15, no. 3, pp. 333-338, 2016.
- [3] M. J. Al-Obaidi, A. H. Abbas, A. Y. Hanoon, and K. Ibrahim, "Using of Thymus Vulgaris extracts to control the snail vector in Schistosomiasis (Part II) ′′. *The Iraqi Journal of Agricultural Sciences*, vol. 49, no. 1, pp. 111-123, 2018.
- [4] D. Duval, R. Galinier, G. Mouahid, E. Toulza, J.F. Allienne, J. Portela *et al*., ′′A novel bacterial pathogen of *Biomphalaria glabrata*′′: a potential weapon for schistosomiasis control? *PLOS Neglected Tropical Diseases*, vol. 9, no. 2, pp. e0003489, 2015.
- [5] G.Y. Osman and A. M. Mohamed, ′′Bio-efficacy of bacterial insecticides, *B. thuringiensis* Berl. as biological control agent against snail vectors of schistosomiasis in Egypt′′. *Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz*, vol. 64, pp. 136–139, 1991.
- [6] S. P. Hopkin, ′′Ecophysiology of metals in terrestrial invertebrates′′. New York: Elsevier, 1989.
- [7] C. O. Adewunmi, W. Becker, O. Kuehast, F. Oluwole, and G. Dorfler, "Accumulation of copper, lead and cadmium in freshwater snails in Southwestern Nigeria′′, *Science of the total Environment*, vol. 193, no 1, pp. 69-73, 1996.
- [8] T. C. Hoang, and G. M. Rand, *''Exposure routes of copper: short term effects on survival, weight and* uptake in Florida apple snails (*Pomacea paludosa*)′′, *Chemosphere*, vol. 76, no 3, pp. 407-414, 2009.
- [9] M. D. Bargues, M. Vigo, P. Horak, J. Dvorak, R. A. Patzner, European Lymnaeidae (Mollusca: Gastropoda), intermediate hosts of trematodes, based on nuclear ribosomal DNA ITS-2 sequences. *Infection, Genetics and Evolution*, vol. 1, no 2, pp. 85-107, 2001.
- [10] F. A. Khdier, ′′The Study of the effect of some medical plant extracts on snail *Lymnaea auricularia′′*. *Journal of Kerbala University*, vol. 10, no. 1, pp.177-180, 2012.
- [11] J. Knezevic-Vukcevic, B. Vukovic-Gasic, T. Stevic, J. Stanojevic, B., Nikolic, and D. Simic, ′′Antimutagenic effect of essential oil of sage (*Salvia officinalis* L.) and its fractions against UV-induced mutations in bacterial and yeast cells′′. *Archives of Biological Sciences Belgrade*. vol. 57, no 3, pp.163- 172, 2005.
- [12] D. Mitic-Culafic, B. Vukovic-Gasic, J. Knezevic-Vukcevic, S. Stankovic, and D. Simic, ′′Comparative study on the Antibacterial activity of volatiles from sage (*Salvia officinalis* L.)′′. *Archives of Biological Sciences Belgrade*. vol. 57, no. 3, pp. 173-178, 2005.
- [13] D. J. Finney, "Probit analysis", 3rd ed., Cambridge University Press, 1971.
- [14] A. Al-Sarar, H. Hussein, Y. Abobakr and A. Bayoumi, ′′Molluscicidal activity of methomyl and cardenolide extracts from *Calotropis procera* and *Adenium arabicum* against the land snail *Monacha cantiana′′*. *Molecules*, vol. 17, no. 5, pp. 5310-5318, 2012.
- [15] M. Adomaitis, G. Skujienė and P. Račinskas, "Reducing the Application Rate of Molluscicide Pellets for the Invasive Spanish Slug, Arion vulgaris′′. *Insects*, vol. 13, no. 3, pp. 301, 2022.
- [16] M. L. Flint, *''Pests of the garden and small farm: a grower's guide to using less pesticide''* (Vol. 3332), UCANR Publications, 2018.
- [17] H. R. El-Seedi, S. A. Khalifa, A. H. Mohamed, N. Yosri, and C. Zhao, ′′Plant extracts and compounds for combating schistosomiasis′′. *Phytochemistry Reviews*, vol. 22, no. 6, pp.1-116. 2023.
- [18] H. A. M. Ibrahim, A. F. El-Mesalamy, S. A. E.W. S. Baghdadi and El. hanbaly, ′′Histopathological effects of methomyl and crude extracts of *Jatropha curcas* against the terrestrial snail, *Monacha obstructa*

(Gastropoda: Hygromiidae)′′. *Chemical and Biological Technologies in Agriculture*, vol. 9, no. 1, p. 65, 2022.

- [19] B. K. Das, ′′Efficacy of some plant derived molluscicides for controlling pestiferous slug, *Laevicaulis alte* in Odisha′′. *J. Emerg. Technol. Innov. Res*, vol. 9, no. 7, pp. 468-478, 2022.
- [20] M. D. Naser, ′′Some notes on Melanopsidae (Gastropoda) of Mesopotamia′′. *Iraqi Journal of Aquaculture,* vol. 3, no. 2, pp. 85-90, 2006.
- [21] M. K. Mohammad, ′′Ecology of the freshwater snail *Melanopsis buccinoidea* (Olivier, 1801) in Ain Al-Tamur, Kerbala Province′′. *International Journal of Current Microbiology and Applied Sciences,* vol. 3, no. 2, pp. 390-394, 2014.
- [22] A. B. M. Al-Waaly, K. M. Mohammad and H. M. Al-Miali ′′Freshwater snails' diversity in the middle and south regions of Iraq′′. *Advances in Bioresearch,* vol. 5, no. 3, pp. 166-171, 2014.
- [23] A. B. Al-Waaly, K. Triwitayakorn, N. Srisawad, D. R. Smith, and M. K. Mohammad ′′Genetic diversity in Radix species from the middle and south of Iraq based on simple sequence repeats′′. *African Journal of Biotechnology*, vol. 17, no. 36, pp.1119-1128, 2018.
- [24] N. N. Mirza, and M. R. Nashaat, ′′Abundance, Diversity and Distribution of Mollusca in the Gharaf River, Southern Iraq′′. *Iraqi Journal of Science*, vol. 60, no. 3, pp. 469-485, 2019.
- [25] S. S. Ibrahim ′′Biodiversity of Mollusks in Rumaitha river-Iraq′′. *International Journal of Research in Pharmaceutical Sciences*, vol. 9, no. 3, pp. 502-509, 2018.
- [26] M. Y. Al-Abbad, S. D. Salman and I. H. Al-Qarooni, ′′Biodiversity of the macroinvertebrates in the Southern Iraqi Marshes, with a special reference to oligochaeta′′. *Journal of Biodiversity and Environmental Sciences*, vol. 7, no. 1, pp. 61-71, 2015.
- [27] M. R. Nashaat and M. N. Al-Azzawi, "Concentrations of copper and zinc in benthic invertebrates collected from the Tigris River at Baghdad City′′. *Journal of International Environmental Application and Science,* vol. 11, no. 1, pp. 8-17, 2016.